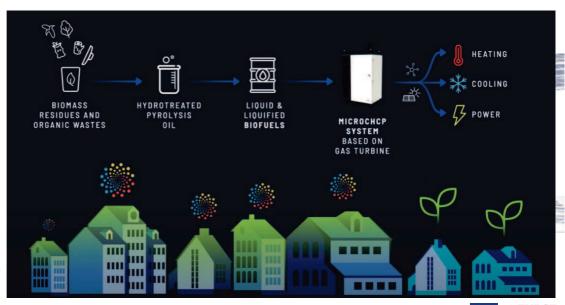
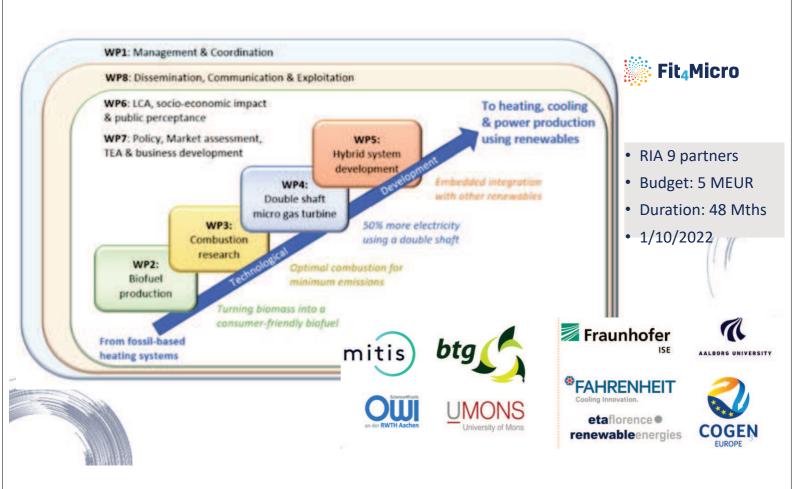
Fit4Micro solution for a microCHCP hybrid heating system running on biofuels

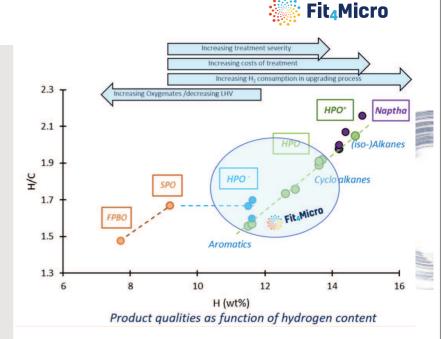
EUBCE 33° European Biomass Conference, 9—12 June 2025, Valencia Spain


Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.



Switching fossil fuel off means Multiple combined solutions

- Reduce energy consumption :
 - Lower heat demand
 - More efficient heating supply
 - Better distribution networks
- Use organic carbon fuels:
 - mix of green electricity
 - · low-carbon gases
 - biofuels from biomass/biogas
- Increase use of electric or hybrid heat pumps



SO-4: Production of truly sustainable 2nd generation liquid biofuels suitable to fuel the microCHCP system

✓ Ex: KPI-4a: Production of HPO with LVH > 40 MJ/kg from residual biomass materials.

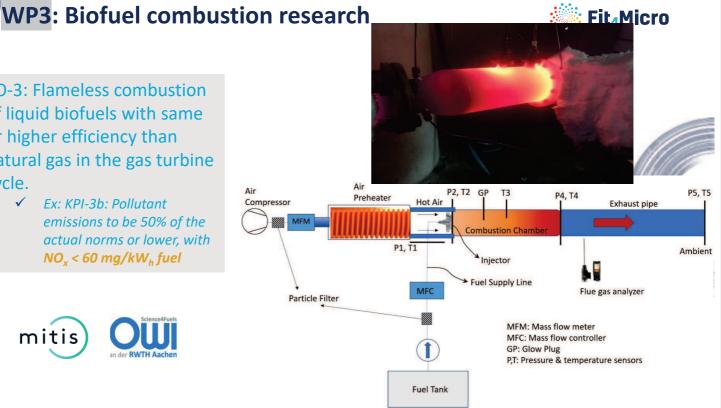
SO-5: Achieving economically competitive operation for the microCHCP system.

✓ KPI-5b: Producing biofuels with cost price < 22 €/GJ (~0.08 €/KW_h)

WP2 (contd.): Production HPO (Hydrotreated Pyrolysis Oi) Fit Micro

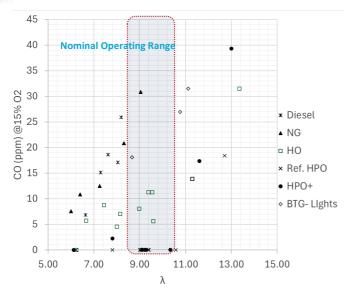
- Production of hydrotreated pyrolysis oil (HPO)
 - Reference quality (task 2.1) current SOTA
 - Low severity (task 2.2) lowering fuel costs
 - From residues (task 2.3) lowering fuel costs
 - Nitrogen removal (task 2.4) limiting emissions

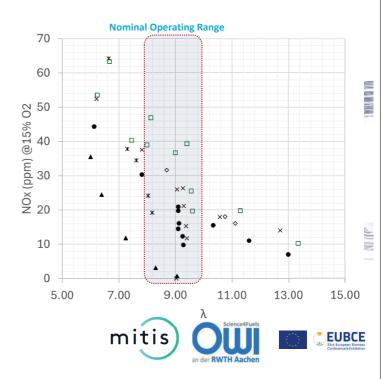
SO-3: Flameless combustion


of liquid biofuels with same or higher efficiency than natural gas in the gas turbine

cycle.

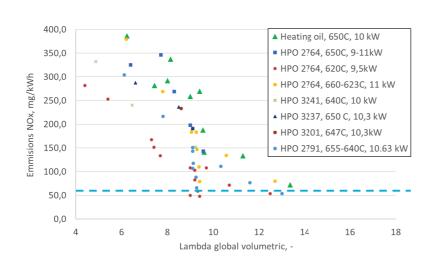
Ex: KPI-3b: Pollutant emissions to be 50% of the actual norms or lower, with $NO_x < 60 \text{ mg/kW}_h \text{ fuel}$





V

WP3 (contd.): Biofuel combustion research



WP3 (contd.): Biofuel combustion research

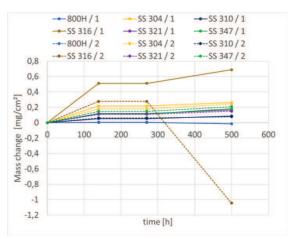
Heating oil, HPO

$$X = \frac{x_m \cdot F^x}{CO_{2,m}}$$

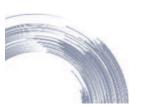
X = emission in unit (e.g. mg/kWh) $x_m =$ measured emission in ppm $F^x =$ calculation factor (e.g. 29.36 for DHO, mg/kWh) $CO_{2m} =$ measured CO_2 value in Vol%

Source: Dittmann, 2008

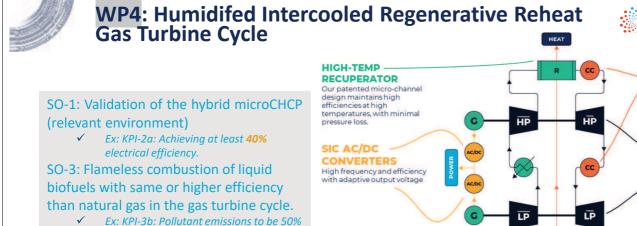
- HPO has similar or lower NOx than DHO for similar conditions
- KPI Fit4Micro: NOx<60mg/kWh


WP3 (contd.): High-temperature materials' assessment

Determination of long-term stable, high-temperature, oxidation-resistant materials for the combustion chamber and turbine wheels that meet the



Photographs of 18x20 mm² alloy samples after 270 h



Fit₄Micro **FLAMELESS** COMBUSTION (1ppm NOx) Our patented combustion method minimizes emissions, while enabling our multi-fuel capability. **ULTRA COMPACT TURBOGENERATOR** WITH FOIL BEARINGS Our unique design ensures super-efficiency and maintains our small form factor solution LP LP Eco Recuperator Steam saturator injection injection

Turbine

for the microCHCP system.

of the actual norms or lower, with **NO**_x <

60 mg/kW_h fuel

SO-5: Achieving economically competitive operation

2500/**500 €/KW**, for a 20 KW, system,

achieving pay-back times < 10 years. (*)

KPI-5a: Investment costs for the microCHCP <

+10.9%

μ10

+22.9%

+9.4% +15.0%

WP4 (contd.): LP stage – micro-10

HIGH-TEMP RECUPERATOR

Our patented micro-channel design maintains high efficiencies at high temperatures, with minimal pressure loss.

SIC AC/DC CONVERTERS

High frequency and efficiency with adaptive output voltage.

FLAMELESS COMBUSTION (Ippm NOx)

Our patented combustion method minimizes emissions, while enabling our multi-fuel capability.

OIL-FREE ULTRA COMPACT TURBOGENERATOR WITH AIR FOIL BEARINGS

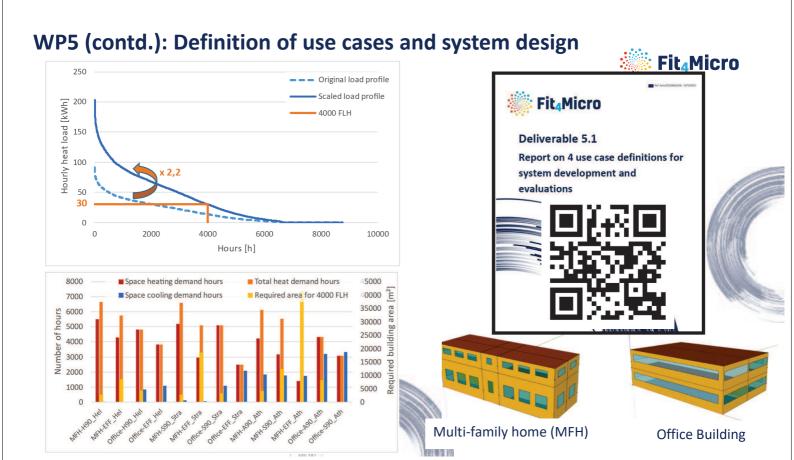
Our unique design ensures super-efficiency and maintains our small form fac

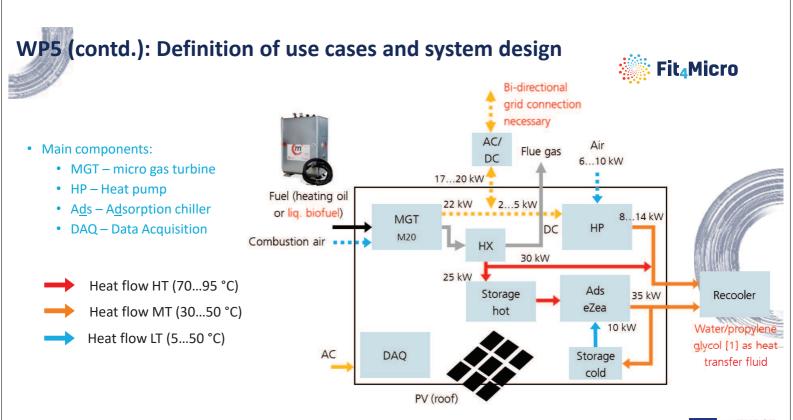
Protected through 12 patents and patent applications in EU, US, CN.

WP5: Integrated hybrid trigeneration system development & evaluation

- SO-6: Demonstrate and validate the sustainability of the HPO-fuelled microCHCP system by detailed LCA assessment.
- ✓ KPI-6a: Primary energy savings > 100% through improved fuel utilization efficiency.
- ✓ KPI-6b: GHG emission savings > 80% compared to using domestic heating oil fuelled CHP system with similar H:P ratio (55% heat, 35% electric).
- ✓ KPI-6c: Reduction of GHG emissions for cooling by 100% compared to compression cooling by using water as refrigerant.

- Design at least 2 hybrid systems and variants for different use cases
- Develop robust and efficient control strategies
- Test a system demonstrator for two most promising use cases in a laboratory environment
- Optimize and evaluate systems based on system simulations





WP5 (contd.): Heating and cooling case testing

Fit₄Micro

Heat pumps to be integrated with the micro gas turbine are tested..

- Silicagel adsorption module from Fahrenheit-
- R290 Heat Pump from MITIS —

WP7: Policy, market assessment

- 1. Monitored and assessed key policy files that have the potential to impact the uptake of micro-CHP and hybrid heating solutions.
- 2. Market assessment
- 3. Techno-economical analysis
- 4. Business development

Opportunities

- Increased focus on energy efficiency, especially for renewable gases
- Need to accelerate the decarbonisation of buildings
- Moving away from the combustion of fossil fuels in buildings (incl. natural gas)
- RES gases/bioenergy of strategic importance to displace Russian gas
- Electrification requires scaling up the deployment of flexible generation
- •Micro-CHP & hybrids recognised as green investments

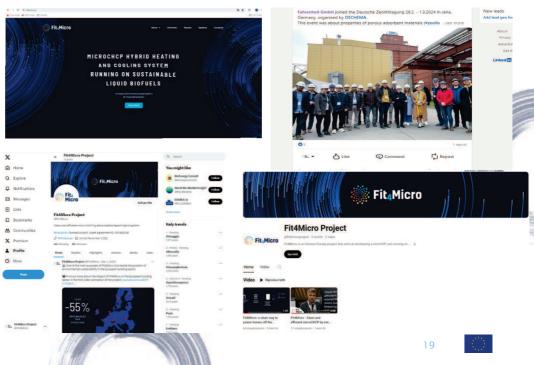
Threats

- Prioritising electrification and district heating for buildings
- Prioritising gas, even renewable gases, for hard-to-decarbonise industrial customers (vs. space heating/electricity)
- Promoting "non-fossil"/non-gas flexibility options, namely demand-side response and storage

WP7 (contd.): High-level findings

- Overall, the micro-CHP sector is stagnant, given competition and support coming from heat pumps
- Renewable CHP is expected to grow. Yet uncertainty remains around the availability, affordability and support for renewable fuels
- Low awareness across EU markets about off-grid applications/bioliquids
- Countries with potential for growth (Off-grid/bioliquids): Czech Republic, France, Germany, Netherlands, Poland, Turkey

WP8: Where to find us?



Fit4Micro Project

info@fit4micro.eu

@Fit4Micro

Fit4Micro Project

info@fit4micro.eu

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.